Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Cytotherapy ; 2023 May 13.
Article in English | MEDLINE | ID: covidwho-2314237

ABSTRACT

BACKGROUND AIMS: Interest in cell-based therapy using extracellular vesicles (EVs) is intensifying, building upon promising preclinical research and a handful of published clinical studies. Registered clinical trials remain small, heterogeneous in design and underpowered to determine safety and efficacy on their own. A scoping review of registered studies can identify opportunities to pool data and perform meta-analysis. METHODS: Registered trials were identified by searching clinical trial databases (Clinicaltrials.gov, the World Health Organization International Clinical Trials Registry Platform and the Chinese Clinical Trial Registry) on June 10, 2022. RESULTS: Seventy-three trials were identified and included for analysis. Mesenchymal stromal cells (MSCs) were the most common cell type from which EVs were derived (49 studies, 67%). Among the 49 identified MSC-EV studies, 25 were controlled trials (51%) with a combined total of 3094 participants anticipated to receive MSC-derived EVs (2225 in controlled studies). Although EVs are being administered to treat a broad range of conditions, trials treating patients with coronavirus disease-2019 and/or acute respiratory distress syndrome were observed most commonly. Despite heterogeneity between studies, we anticipate that at least some of the studies could be combined in meaningful meta-analysis and that a combined sample size of 1000 patients would provide the ability to detect a ≥5% difference in mortality with MSC-EVs compared to controls and could be achieved by December 2023. CONCLUSIONS: This scoping review identifies potential barriers that may stall clinical translation of EV-based treatment, and our analysis calls for more standardized product characterization, use of quantifiable product quality attributes and consistent outcome reporting in future clinical trials.

2.
Curr Oncol ; 30(3): 3549-3556, 2023 03 22.
Article in English | MEDLINE | ID: covidwho-2275717

ABSTRACT

BACKGROUND AND OBJECTIVES: The COVID-19 pandemic profoundly influenced unrelated donor (UD) allogeneic peripheral blood stem cell (PBSC) collections. Changes included efforts to minimize COVID-19 exposure to donors and cryopreservation of products. The extent to which the efficacy and safety of PBSC donations were affected by the pandemic is unknown. METHODS: Prospective cohort analysis of PBSC collections comparing pre-pandemic (01 April 2019-14 March 2020) and pandemic (15 March 2020-31 March 2022) eras. RESULTS: Of a total of 291 PBSC collections, cryopreservation was undertaken in 71.4% of pandemic donations compared to 1.1% pre-pandemic. The mean requested CD34+ cell dose/kg increased from 4.9 ± 0.2 × 106 pre-pandemic to 5.4 ± 0.1 × 106 during the pandemic. Despite this increased demand, the proportion of collections that met or exceeded the requested cell dose did not change, and the mean CD34+ cell doses collected (8.9 ± 0.5 × 106 pre-pandemic vs. 9.7 ± 0.4 × 106 during the pandemic) remained above requested targets. Central-line placements were more frequent, and severe adverse events in donors increased during the pandemic. CONCLUSION: Cryopreservation of UD PBSC products increased during the pandemic. In association with this, requested cell doses for PBSC collections increased. Collection targets were met or exceeded at the same frequency, signaling high donor and collection center commitment. This was at the expense of increased donor or product-related severe adverse events. We highlight the need for heightened vigilance about donor safety as demands on donors have increased since the pandemic.


Subject(s)
COVID-19 , Hematopoietic Stem Cell Transplantation , Humans , Pandemics , Unrelated Donors , Prospective Studies , Blood Donors
3.
Cytotherapy ; 2022 Oct 13.
Article in English | MEDLINE | ID: covidwho-2231941

ABSTRACT

BACKGROUND AIMS: Evidence regarding the extent that mesenchymal stromal cells (MSCs) may improve clinical outcomes in patients with coronavirus disease 2019 (COVID-19) has been limited by marked inter-study heterogeneity, inconsistent product characterization and appreciable risk of bias (RoB). Given the evolution of treatment options and trajectory of the pandemic, an updated analysis of high-quality evidence from randomized controlled trials is needed for a timely and conclusive understanding of the effectiveness of MSCs. METHODS: A systematic literature search through March 30, 2022, identified all English language, full-text randomized controlled trials examining the use of MSCs in the treatment of COVID-19. RESULTS: Eight studies were identified (316 patients, 165 administered MSCs and 151 controls). Controls evolved significantly over time with a broad range of comparison treatments. All studies reported mortality at study endpoint. Random effects meta-analysis revealed that MSCs decreased relative risk of death (risk ratio, 0.63, 95% confidence interval, 0.42-0.94, P = 0.02, I2 = 14%) with no significant difference in absolute risk of death. MSCs decreased length of hospital stay and C-reactive protein levels and increased odds of clinical improvement at study endpoint compared with controls. Rates of adverse events and severe adverse events were similar between MSC and control groups. Only two (25%) studies reported all four International Society for Cell & Gene Therapy criteria for MSC characterization. Included studies had low (n = 7) or some (n = 1) concerns regarding RoB. CONCLUSIONS: MSCs may reduce risk of death in patients with severe or critical COVID-19 and improve secondary clinical outcomes. Variable outcome reporting, inconsistent product characterization and variable control group treatments remain barriers to higher-quality evidence and may constrain clinical usage. A master protocol is proposed and appears necessary for accelerated translation of higher-quality evidence for future applications of MSC therapy.

4.
Transplantation ; 2022 Nov 04.
Article in English | MEDLINE | ID: covidwho-2227850

ABSTRACT

BACKGROUND: High rates of nonresponse to 2 doses of mRNA severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine have been reported in transplant recipients. Several studies have investigated the efficacy of a third dose in this population. However, efficacy remains unclear, as response rates vary across studies. Therefore, we conducted a systematic review and meta-analysis to determine the efficacy of a third dose of any mRNA SARS-CoV-2 vaccine in transplant recipients. METHODS: Preferred Reporting Items for Systematic Review and Meta-Analysis reporting guidelines (PROSPERO:CRD42021281498) were followed. Medline, Embase, and CENTRAL were searched from inception to December 2, 2021, without restrictions. All full-text studies reporting on the efficacy of a third dose of any mRNA SARS-CoV-2 vaccine in pediatric and adult transplant recipients were included. The National Institutes of Health quality assessment tool for case series and the Cochrane risk of bias tool determined study quality. Meta-analysis was performed via the DerSimonian-Laird random-effect model. RESULTS: Of 84 records, 12 studies totaling 1257 patients met inclusion criteria. One study was a randomized controlled trial, whereas all other studies were observational. Across 7 studies (801 patients), humoral response after 3 doses was observed in 66.1% (95% confidence interval, 62.8%-69.4%; I2 = 0%) of transplant recipients. Triple immunosuppression, mycophenolate, antiproliferatives, and belatacept use were associated with reduced odds of humoral response in studies reporting multivariate analyses. Transplant recipients receiving a third dose displayed higher levels of neutralizing antibodies to SARS-CoV-2 variants (Alpha, Beta, and Delta) compared with placebo. CONCLUSIONS: A third dose SARS-CoV-2 mRNA vaccine should be strongly considered in transplant recipients. Limitations included lack of controlled studies and clinically relevant thresholds to determine response to vaccination.

5.
Stem Cells Transl Med ; 11(7): 675-687, 2022 07 20.
Article in English | MEDLINE | ID: covidwho-1908958

ABSTRACT

BACKGROUND: Mesenchymal stromal cells (MSCs) may reduce mortality in patients with COVID-19; however, early evidence is based on few studies with marked interstudy heterogeneity. The second iteration of our living systematic review and meta-analysis evaluates a framework needed for synthesizing evidence from high-quality studies to accelerate consideration for approval. METHODS: A systematic search of the literature was conducted on November 15, 2021, to identify all English-language, full-text, and controlled clinical studies examining MSCs to treat COVID-19 (PROSPERO: CRD42021225431). FINDINGS: Eleven studies were identified (403 patients with severe and/or critical COVID-19, including 207 given MSCs and 196 controls). All 11 studies reported mortality and were pooled through random-effects meta-analysis. MSCs decreased relative risk of death at study endpoint (RR: 0.50 [95% CI, 0.34-0.75]) and RR of death at 28 days after treatment (0.19 [95% CI], 0.05-0.78) compared to controls. MSCs also decreased length of hospital stay (mean difference (MD: -3.97 days [95% CI, -6.09 to -1.85], n = 5 studies) and increased oxygenation levels at study endpoint compared to controls (MD: 105.62 mmHg O2 [95% CI, 73.9-137.3,], n = 3 studies). Only 2 of 11 studies reported on all International Society for Cellular Therapy (ISCT) criteria for MSC characterization. Included randomized controlled trials were found to have some concerns (n = 2) to low (n = 4) risk of bias (RoB), while all non-randomized studies were found to have moderate (n = 5) RoB. INTERPRETATION: Our updated living systematic review concludes that MSCs can likely reduce mortality in patients with severe or critical COVID-19. A master protocol based on our Faster Approval framework appears necessary to facilitate the more accelerated accumulation of high-quality evidence that would reduce RoB, improve consistency in product characterization, and standardize outcome reporting.


Subject(s)
COVID-19 , Mesenchymal Stem Cells , Bias , COVID-19/therapy , Humans , Lung , Randomized Controlled Trials as Topic
6.
Vox Sang ; 117(9): 1121-1125, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1854205

ABSTRACT

BACKGROUND AND OBJECTIVES: Understanding changes in the demand and usage of unrelated allogeneic haematopoietic cell transplantation (HCT) donors during the COVID-19 pandemic is needed to optimize pandemic preparedness of registry and donor collection services. The aim of this study was to understand the extent to which the pandemic has impacted the demand and usage of unrelated donors and cord blood units (CBUs) at Canadian Blood Services (CBS). MATERIALS AND METHODS: Data regarding stem cell donor interest and product usage for unrelated allogeneic HCT were retrieved from the database at CBS using de-identified anonymous information. RESULTS: Unrelated donor searches for Canadian patients remained unchanged by the pandemic, reflecting stable demand. The number of unrelated allogeneic transplants performed within Canada also remained stable, while the number of cord blood transplants increased, chiefly for paediatric patients. Requests for donor verification typing, a first signal of potential interest, increased from domestic centres during the first 6 months of the pandemic and decreased from international centres, before returning to baseline levels. The proportion of transplants for Canadian patients who used stem cell products procured from Canadian donors increased between 3 and 6 months after the start of the pandemic before returning to baseline and appears to be increasing again more than 1 year after the start of the pandemic. Use of CBUs for Canadian paediatric patients increased and remains elevated. CONCLUSION: Demand for unrelated adult HCT donors has remained stable despite the evolving pandemic with a transient and recurring increased interest and usage of domestic adult donors. Use of CBUs for paediatric patients has increased and remains elevated. Registries and donor collection centres should maintain the capacity to expand services for domestic donor collection during pandemics to offset threats to international donor usage.


Subject(s)
COVID-19 , Hematopoietic Stem Cell Transplantation , Peripheral Blood Stem Cells , Adult , COVID-19/epidemiology , Canada/epidemiology , Child , Humans , Pandemics , Registries , Unrelated Donors
7.
Cytotherapy ; 24(6): 639-649, 2022 06.
Article in English | MEDLINE | ID: covidwho-1729893

ABSTRACT

BACKGROUND: Mesenchymal stem/stromal cells (MSCs) and their secreted products are a promising therapy for COVID-19 given their immunomodulatory and tissue repair capabilities. Many small studies were launched at the onset of the pandemic, and repeated meta-analysis is critical to obtain timely and sufficient statistical power to determine efficacy. METHODS AND FINDINGS: All English-language published studies identified in our systematic search (up to February 3, 2021) examining the use of MSC-derived products to treat patients with COVID-19 were identified. Risk of bias (RoB) was assessed for all studies. Nine studies were identified (189 patients), four of which were controlled (93 patients). Three of the controlled studies reported on mortality (primary analysis) and were pooled through random-effects meta-analysis. MSCs decreased the risk of death at study endpoint compared with controls (risk ratio, 0.18; 95% confidence interval [CI], 0.04 to 0.74; P = .02; I2 = 0%), although follow-up differed. Among secondary outcomes, interleukin-6 levels were most commonly reported and were decreased compared with controls (standardized mean difference, -0.69; 95% CI, -1.15 to -0.22; P = .004; I2 = 0%) (n = 3 studies). Other outcomes were not reported consistently, and pooled estimates of effect were not performed. Substantial heterogeneity was observed between studies in terms of study design. Adherence to published ISCT criteria for MSC characterization was low. In two of nine studies, RoB analysis revealed a low to moderate risk of bias in controlled studies, and uncontrolled case series were of good (3 studies) or fair (2 studies) quality. CONCLUSION: Use of MSCs to treat COVID-19 appears promising; however, few studies were identified, and potential risk of bias was detected in all studies. More controlled studies that report uniform clinical outcomes and use MSC products that meet standard ISCT criteria should be performed. Future iterations of our systematic search should refine estimates of efficacy and clarify potential adverse effects.


Subject(s)
COVID-19 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , COVID-19/therapy , Humans , Mesenchymal Stem Cell Transplantation/methods , Pandemics , SARS-CoV-2
8.
Curr Oncol ; 29(1): 337-349, 2022 01 13.
Article in English | MEDLINE | ID: covidwho-1624989

ABSTRACT

The management of COVID-19 in hematopoietic cell transplant (HCT) recipients represents a special challenge given the variable states of immune dysregulation and altered vaccine efficacy in this population. A systematic search (Ovid Medline and Embase on 1 June 2021) was needed to better understand the presenting features, prognostic factors, and treatment options. Of 897 records, 29 studies were identified in our search. Most studies reporting on adults and pediatric recipients described signs and symptoms that were typical of COVID-19. Overall, the mortality rates were high, with 21% of adults and 6% of pediatric HCT recipients succumbing to COVID-19. The factors reported to be associated with increased mortality included age (HR = 1.21, 95% CI 1.03-1.43, p = 0.02), ICU admission (HR = 4.42, 95% CI 2.25-8.65, p < 0.001 and HR = 2.26, 95% CI 1.22-4.20, p = 0.01 for allogeneic and autologous HCT recipients), and low platelet count (OR = 21.37, 95% CI 1.71-267.11, p = 0.01). Performance status was associated with decreased mortality (HR = 0.83, 95% CI 0.74-0.93, p = 0.001). A broad range of treatments was described, although no controlled studies were identified. The risk of bias, using the Newcastle-Ottawa scale, was low. Patients undergoing HCT are at a high risk of severe morbidity and mortality associated with COVID-19. Controlled studies investigating potential treatments are required to determine the efficacy and safety in this population.


Subject(s)
COVID-19 , Hematopoietic Stem Cell Transplantation , Child , Humans , SARS-CoV-2 , Vaccine Efficacy
9.
J Extracell Vesicles ; 10(12): e12141, 2021 10.
Article in English | MEDLINE | ID: covidwho-1451869

ABSTRACT

Preclinical studies suggest mesenchymal stromal cell extracellular vesicles (MSC-EVs) reduce inflammation and improve organ function in lung diseases; however, an objective analysis of all available data is needed prior to translation. Using rigorous meta-research methods, we determined the effectiveness of MSC-EVs for preclinical respiratory diseases and identified experimental conditions that may further refine this therapy. A systematic search of MEDLINE/Embase identified 1167 records. After screening, 52 articles were included for data extraction and evaluated for risk of bias and quality of reporting in study design. A random effects meta-analysis was conducted for acute lung injury (ALI; N = 23), bronchopulmonary dysplasia (BPD; N = 8) and pulmonary arterial hypertension (PAH; N = 7). Subgroup analyses identified EV methods/characteristics that may be associated with improved efficacy. Data is presented as standardized mean differences (SMD) or risk ratios (RR) with 95% confidence intervals (CI). For ALI, MSC-EVs markedly reduced lung injury (SMD -4.33, CI -5.73 to -2.92), vascular permeability (SMD -2.43, CI -3.05 to -1.82), and mortality (RR 0.39, CI 0.22 to 0.68). Small EVs were more consistently effective than large EVs whereas no differences were observed between tissue sources, immunocompatibility or isolation techniques. For BPD, alveolarization was improved by MSC-EVs (SMD -1.45, CI -2.08 to -0.82) with small EVs more consistently beneficial then small/large EVs. In PAH, right ventricular systolic pressure (SMD -4.16, CI -5.68 to -2.64) and hypertrophy (SMD -2.80, CI -3.68 to -1.91) were significantly attenuated by EVs. In BPD and PAH, EVs isolated by ultracentrifugation demonstrated therapeutic benefit whereas tangential flow filtration (N = 2) displayed minimal efficacy. Lastly, risk of bias and quality of reporting for experimental design were consistently unclear across all studies. Our findings demonstrate clear potential of MSC-EVs to be developed as therapy for acute and chronic lung diseases. However, greater transparency in research design and direct comparisons of isolation technique and EV subtypes are needed to generate robust evidence to guide clinical translation. Protocol Registration: PROSPERO CRD42020145334.


Subject(s)
Extracellular Vesicles/metabolism , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Respiration Disorders/therapy , Acute Disease , Animals , Chronic Disease , Disease Models, Animal , Humans
10.
Syst Rev ; 10(1): 249, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1412799

ABSTRACT

BACKGROUND: Mesenchymal stromal cells (MSCs) have significant immunomodulatory and tissue repair capabilities, mediated partly by conditioned media or through secreted extracellular vesicles (MSC-EVs). Infection with SARS-CoV-2 can cause mild to life-threatening illness due to activated immune responses that may be dampened by MSCs or their secretome. Many clinical studies of MSCs have been launched since the beginning of the global pandemic, however, few have been completed and most lack power to assess efficacy. Repeated systematic searches and meta-analyses are needed to understand, in real time, the extent of potential benefit in different patient populations as the evidence emerges. METHODS: This living systematic review will be maintained to provide up-to-date information as the pandemic evolves. A systematic literature search of Embase, MEDLINE, and Cochrane Central Register of Controlled Trials databases will be performed. All clinical studies (e.g., randomized, pseudorandomized and non-randomized controlled trials, uncontrolled trials, and case series) employing MSCs or their secretome as a therapeutic intervention for COVID-19 will be included. Patients must have confirmed SARS-CoV-2 infection. Study screening and data extraction will be performed in duplicate. Information concerning interventions, patient populations, methods of MSC isolation and characterization, primary and secondary clinical and/or laboratory outcomes, and adverse events will be extracted. Key clinical outcomes will be pooled through random-effects meta-analysis to determine the efficacy of MSCs and their secreted products for COVID-19. DISCUSSION: Our systematic review and subsequent updates will inform the scientific, medical, and health policy communities as the pandemic evolves to guide decisions on the appropriate use of MSC-related products to treat COVID-19. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD 42021225431.


Subject(s)
COVID-19 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Meta-Analysis as Topic , Pandemics , SARS-CoV-2 , Systematic Reviews as Topic
12.
Transfus Med Rev ; 34(3): 158-164, 2020 07.
Article in English | MEDLINE | ID: covidwho-654280

ABSTRACT

Many parallel studies of convalescent plasma with modest enrolment projections have been launched for the treatment of COVID-19. By pooling data from multiple parallel studies that are similar, we can increase the effective sample size and achieve enough statistical power to determine effectiveness more quickly through meta-analysis. A scoping review of registered clinical trials of convalescent plasma for COVID-19 was conducted to assess the feasibility of performing a rapid and timely meta-analysis that will support accelerated review for approval and implementation. ClinicalTrials.gov and the WHO International Clinical Trials Registry Platform were searched April 23, 2020. Trials were included if they utilized convalescent plasma to treat or prevent COVID-19. Forty-eight registered trials (projected to enroll more than 5000 subjects) of convalescent plasma were identified and included for analysis. The majority of studies (33 studies with 4440 projected enrolment) will address the treatment of severe and/or critical cases of COVID-19. Twenty-nine studies are controlled and 17 of these are reported as actively recruiting. The combined enrolment of patients from similar studies should be sufficient to determine meaningful improvements in mortality, rates of admission to intensive care and need for mechanical ventilation by the end of 2020-sooner than any individual study could determine effectiveness. Accessing supplemental outcome data from investigators may be needed; however, to align reporting of some outcomes from these studies. Heterogeneity in product potency due to different antibody titers is anticipated and studies using conventional treatment as controls instead of placebo may complicate our understanding of efficacy. Convalescent plasma is being tested in ongoing controlled studies, largely to treat severe and/or critical cases of COVID-19. Sufficient combined power to detect clinically important reductions in multiple outcomes, including mortality, is expected by September 2020. Regulatory approval, funding and implementation by blood operators could be accelerated by planned meta-analysis as study results become available.


Subject(s)
Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Betacoronavirus , COVID-19 , Clinical Trials as Topic , Critical Care , Global Health , Humans , Immunization, Passive , Pandemics , Registries , Reproducibility of Results , Research Design , Respiration, Artificial , SARS-CoV-2 , Sample Size , Treatment Outcome , COVID-19 Serotherapy
13.
Transfus Med Rev ; 34(3): 165-171, 2020 07.
Article in English | MEDLINE | ID: covidwho-628007

ABSTRACT

The urgent need for safe and effective treatments for COVID-19 has fueled the launch of many parallel complex studies of cellular therapies with small to modest enrolment projections. By pooling data from multiple studies that are similar, we can increase the ability to achieve sufficient power to determine effectiveness more quickly through meta-analysis. A scoping review of registered clinical trials using cell-based interventions for COVID-19 was conducted to identify candidate studies for meta-analysis that could support an accelerated regulatory review. ClinicalTrials.gov and WHO International Clinical Trials Registry Platform were searched April 23, 2020. Trials were included if they utilized cell or cell-derived products to treat or prevent COVID-19. Fifty-four registered cellular therapy trials were identified and included for analysis. Studies of mesenchymal stromal cells (MSCs; 41 studies; 1129 subjects projected to receive cells) and natural killer (NK) cells (5 studies; 135 projected to received cells) were observed most commonly. A subset of studies are controlled (34 studies, or 63%), including 27 studies of MSCs and 3 of NK cells. While heterogeneity in study design exists, the cumulative projected enrolment of patients from similar studies appears sufficient to allow the detection of meaningful differences in clinically important outcomes such as mortality, admission to intensive care and need for mechanical ventilation by September 2020-sooner than any individual study could determine effectiveness. MSCs are the predominant cell type in registered trials for severe or critical COVID-19 and represent the most promising candidates for future meta-analysis. Sufficient pooled sample size to detect clinically important reductions in multiple outcomes, including mortality, is anticipated by September 2020, but may require accessing supplementary data to align outcome reporting. Regulatory approval, funding and implementation by cell manufacturing partners will be accelerated by our framework for rapid meta-analysis.


Subject(s)
Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Betacoronavirus , COVID-19 , Clinical Trials as Topic , Critical Care , Global Health , Humans , Immunization, Passive , Killer Cells, Natural/metabolism , Mesenchymal Stem Cells/metabolism , Pandemics , Registries , Reproducibility of Results , Research Design , Respiration, Artificial , SARS-CoV-2 , Sample Size , Treatment Outcome , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL